
1

A look-up table-based ray integration framework
for 2D/3D forward and back-projection in X-ray CT

Sungsoo Ha and Klaus Mueller, Senior Member, IEEE

Abstract—Iterative algorithms have become increasingly pop-
ular in Computed Tomography (CT) image reconstruction since
they better deal with the adverse image artifacts arising from
low radiation dose image acquisition. But iterative methods
remain computationally expensive. The main cost emerges in
the projection and backprojection operations where accurate
CT system modeling can greatly improve the quality of the
reconstructed image. We present a framework that improves
upon one particular aspect – the accurate projection of the
image basis functions. It differs from current methods in that
it substitutes the high computational complexity associated with
accurate voxel projection by a small number of memory opera-
tions. Coefficients are computed in advance and stored in look-up
tables parameterized by the CT system’s projection geometry.
The look-up tables only require a few kilobytes of storage and
can be efficiently accelerated on the GPU. We demonstrate our
framework with both numerical and clinical experiments and
compare its performance with the current state of the art scheme
– the separable footprint method.

Index Terms—iterative CT reconstruction, separable footprint,
look-up table, LUT, NVIDIA GPU, CUDA

I. INTRODUCTION

W ITH the increasing popularity of iterative reconstruc-
tion methods in medical computed tomography (CT),

modeling a realistic CT system in software is more crucial than
ever. The CT system model can be represented by a matrix
where each element indicates the contribution of a voxel to an
X-ray path. The process of evaluating the attenuation of X-
ray according to the properties of the material while traveling
across a discretized object is known as forward-projection,
while its reverse model, generally defined as the transpose
of forward projection, is known as back-projection. Since
the size of the CT system matrix is enormous, the elements
are typically computed on-the-fly during forward- and back-
projection. This, however, comes with high computational
cost making these operations the computational bottleneck of
iterative CT reconstruction methods.

The most intuitive and simplest way to model the CT system
is via line integration [1], [2]. In this model, an X-ray path is
depicted by a zero width line and the contribution of a voxel to
the ray integral is approximated by the line intersection length.
While this popular scheme has low computational complexity
it suffers from under-sampling and aliasing [3], [4].

A more accurate approach is volume integration (area
integration for fan-beam). While volume (or area) integration
does not take into account the exponential edge gradient effect

Sungsoo Ha and Klaus Mueller are with the Visual Analytics and Imaging
Lab at the Computer Science Department at Stony Brook University, Stony
Brook, NY 11794-4400 USA (e-mail: sunha, mueller@cs.sunysb.edu).

[5], it affords a much closer model of a real CT system
than line integration. In the volume (area) integration model
a ray path is depicted by a 3D polyhedron (2D polygon)
that connects the X-ray source with the four edges (two
corners) of a detector bin. The contribution of a voxel to
the path is then the intersection volume (area). Yu et al.
[4] demonstrated the potential of this model for improving
spatial resolution and suppressing high-frequency artifacts,
while Zhang et al. [6] proposed an efficient algorithm which
computes the intersection area by categorizing the ray-voxel
intersections into six cases that can be calculated in a simple
algebraic fashion. Their scheme, however, was only described
for fan-beam geometry, and it is unclear how one could support
3D geometries such as cone-beam or helical scans without
losing the prescribed computational efficiency.

At the expense of accuracy there are also two popular
projection-space volume integration-based approaches. The
first is the distance-driven (DD) method [3] which maps the
boundaries of a voxel and a detector bin to a common axis
and approximates the intersection volume by the product of
a rectangular shaped footprint and an amplitude term. The
second approach is the separable footprint (SF) method [7]
which approximates the voxel footprint by a 2D separable
function. The SF has been shown to be more accurate than
the DD method, while keeping a similar time performance.

Our own recent work [8] introduced various voxel subdivi-
sion schemes that approximate the voxel volume integration
at arbitrary levels of precision directly in image space. These
schemes leverage GPU-acceleration [9], [10] to reduce their
high computational cost, but the speed is still too slow for
clinical use. More recently, we introduced a method [11] for
fan-beam geometries that pre-computes sampled intersection
volumes and stores them in a look-up table such that unknown
samples can be mapped into the table and then calculated via
a bilinear interpolation scheme. This look-up table-based ray
integration (LTRI) method showed very promising results both
in terms of accuracy and speed, but since it was only defined
for fan-beam geometry its practical use was limited.

Look-up tables are fairly popular and have been utilized in
many areas to save computation time. For example, Hensley et
al. [12] devised a GPU-accelerated method that quickly gener-
ates a summed-area table and employs it for real-time volume
rendering. Specifically for CT reconstruction, Entezari et al.
[13] utilized a lookup table to store the ray (but not volume)
integrals of a box-spline basis function. Ziegler et al. [14]
used lookup tables for radially-symmetric blob basis functions.
While their method models a blob’s volumetric contribution
it approximates the locally diverging beam by a piecewise

(Author's copy) Published in IEEE Transactions on Medical Imaging, 2017

2

parallel beam. Our scheme makes no such approximations and
extends our former LTRI method defined for fan-beam to also
support 3D cone-beam geometries.

Our paper is structured as follows. Section II summarizes
the original fan-beam LTRI method, while Section III presents
our new contribution – extending the 2D LTRI scheme to cone-
beam geometries. Section IV presents our CUDA implemen-
tation [15] of the forward- and back-projection operators. [3],
[7], [8]. Section V presents numerical experiments geared to
(1) find the optimal table resolutions and (2) compare the 3D
LTRI with the SF method [7]. Finally, Section VI concludes
this paper with a discussion and future work.

II. FAN-BEAM PROJECTION

For simplicity of presentation we choose to describe our
look-up table-based ray integration (LTRI) scheme by ways
of the flat detector axial fan-beam geometry. Our method,
however, readily extends to arc detectors as well as other 3D
CT geometries, such as helical CT. Also, in preparation for our
subsequent discussion of the 3D cone-beam case (see Section
III) we shall use the term voxel to also refer to the 2D elements
that make up the grid in the fan-beam case.

Given an X-ray point source and detector on a circular
trajectory, the i-th projection at view θ (pθi) corresponds to the
area integral over the fan-beam segment defined by connecting
the X-ray source (vsrc) with the two corners of the i-th
detector bin. This so called source-bin triangle (SBT) can be
formalized as follows [4] (see illustration in Fig. 1):

pθi =
1

γϕ,i

∑
n∈ΩSBT

f [n]
dn

||vn − vsrc||
, (1)

where f [n] is the value of a voxel n = (nx, ny) ∈ Z2 located
on a 2D grid of size Nx×Ny with spacing ∆x×∆y . The sum
runs over all voxels that at least partially fall within the SBT
region (ΩSBT), weighted by the ratio of the ray-voxel inter-
section area (dn) and the ray-arc length (γϕ,i · ||vn − vsrc||).
The latter takes into account the geometric spreading effect
where voxels closer to the X-ray source cast larger shadows
on the detector than voxels closer to the detector. The term
vn is the location of the center of the n-th voxel, and γϕ,i
is the angle of the i-th fan-beam segment. Note that ϕ is
used to denote the azimuthal angle. We assume ∆x = ∆y

which is the typical configuration in CT reconstruction. In the
remainder of this discussion, our main interest focuses on the
computation of the ray-voxel intersection area (dn), which is
the most compute-intensive part of (1).

A. Exact ray-voxel area

In fan-beam CT geometry, the term dn in (1) is the
intersection area of a voxel and an SBT. This intersection
area is a 2-D convex polygon and can be computed as follows
[16] (see Fig. 2 for an illustration):

area =
1

2

∣∣∣∣∣
K∑
i=1

(
vxi v

y
i+1 − vxi+1v

y
i

)∣∣∣∣∣ , (2)

where vi is a vertex of the polygon and there are K(≥ 3)
vertices. Although it is possible to compute the area precisely

Fig. 1. Ray-voxel intersect area in fan-beam geometry.

Fig. 2. Ray-voxel intersection area. The intersection area can be com-
puted with two memory operations using the area look-up table such that
aLUT (Dred, θ

red
d)− aLUT (Dblue, θ

blue
d).

using (2), this is computationally very expensive because it
requires to first determine all vertices of the polygon, if any,
and then sort them in a predefined direction before the summa-
tion can be applied. For example, to compute the intersection
area in Fig. 2, the five vertices, {v1,v2,v3,v5,v6} need to
be first identified by line intersection calculations and then
sorted in clock-wise or counter clock-wise order to execute (2).
Sequential computations of this sort are not very amenable to
parallel processing and so there is not much opportunity for
GPU acceleration. In the next section, we explain how this
long sequential process can be replaced by a simple memory
operation, using a look-up table.

B. Area look-up table

The area look-up table (aLUT) we construct returns the
intersection area across a voxel defined by the half plane
bounded by the directed line that represents a ray connecting
the X-ray source to one corner of a detector bin in a predefined
direction. The signed perpendicular distance, Dline, from the

3

Fig. 3. The area look-up table with a 0.415 x 0.415 mm2 sized voxel. Using
symmetry properties, it covers the ranges of θd ∈ [0°, 45°] and Dline ∈
[0, Dtline] where Dtline ≈ 0.3 mm. The (Dred, θ

red
d) and (Dblue, θ

blue
d)

correspond to the ray-voxel intersection areas shown in Fig. 2.

center of the voxel to this line is assigned to the first dimension
of the aLUT . The second dimension is the directed angle, θd,
measured from a reference axis to the head of the line. We
used the x-axis as the reference axis in our work. Given a pair
(Dline, θd), the corresponding intersection area is computed
by following (2) and storing the result in the table. The
intersection area between a voxel and a fan-beam, which
is represented by using two lines, can then be efficiently
computed by the difference of two such areas, fetched from
the table as illustrated in Fig. 2 and Fig. 3.

With Ns being the size of a 1D flat detector, there are
(Ns + 1) lines that connect a corner of a detector bin with
the X-ray source for a projection view, θ. For example, in
Fig. 1, there are 10 lines. Each line can be represented by the
directed angle (θd) and the normalized general form of a 1D
line equation, calculated as follows:

θd = arctan(A/B)

0 = (A/Z)x+ (B/Z)y + (C/Z) ,
(3)

where

A = vysrc − vyi , B = vxi − vxsrc

C = vxsrcv
y
i − vxi v

y
src , Z =

√
A2 +B2 .

(4)

Here, vsrc is the 2D position of the X-ray source and vi is
the 2D position of a detector bin corner. Since the detector
and source are fixed for a given view, the coefficients A, B,
C, Z, and θd can be pre-computed for each bin corner and
stored in a temporary (for the given view only) 1D table with
O(Ns + 1) space complexity. In fact, we divide A, B, and C
by Z and only store these normalized coefficients, along with
θd. The table is then indexed by the line’s detector bin corner
index. The computational cost required for this is typically
negligible in the context of the overall projection operations.

Using the A, B, C coefficients stored in this view-based
table, we can compute the perpendicular distance for a given
line with respect to a voxel centered at (x0, y0) as follows:

D
(x0,y0)
line = Ax0 +By0 + C , (5)

which is paired with the stored θd coefficient to form the 2D
index for the general aLUT table

(
D

(x0,y0)
line , θd

)
. This yields

the one-sided intersection area between the voxel centered at
(x0, y0) and a ray (or line). Bi-linear interpolation is employed
for table look-ups with non-integer queries.

TABLE I
ANGULAR SYMMETRY OF aLUT AND hLUT

θ∗ a θsym b

45° < θ∗ ≤ 135° |90°− θ∗|
135° < θ∗ ≤ 225° |180°− θ∗|
225° < θ∗ ≤ 315° |270°− θ∗|
315° < θ∗ ≤ 360° |360°− θ∗|

a θd for aLUT and θϕ for hLUT .
b angle (∈ [0°, 45°]) that returns the same value in a LUT .

Making use of symmetry properties derived from the square
shape of a voxel (∆x = ∆y), the coverage of Dline is
[0, Dt

line] and for θd it is [0°, 45°]. For negative distances, the
corresponding area is equal to S−aLUT (|Dline|, θd) where S
is the square area (∆x ×∆y). For directed angles larger than
45°, we can utilize the angular symmetric properties described
in TABLE I. The threshold distance, Dt

line, then is:

Dt
line = 0.5 ·

√
∆2
x + ∆2

y , (6)

This is a voxel’s half diagonal since the one-sided intersection
area converges either to zero or full area beyond the length.

III. CONE-BEAM PROJECTION

We shall now extend the look-up table-based ray integra-
tion (LTRI) method from the 2D to the 3D reconstruction
setting. For ease of illustration, we assume a flat detector
in an axial cone-beam geometry, but our framework is not
restricted to that configuration. Let f [n] be the value of a
voxel n = (nx, ny, nz) ∈ Z3 located in a 3D grid of size
Nx × Ny × Nz with spacing ∆x × ∆y × ∆z . Without loss
of generality, we assume ∆x = ∆y for the fan-beam case.
For the added axial dimension we keep it more general, that
is, ∆x 6= ∆z , – a voxel does not need to be a cube. This
often arises in practical situations where the inter-slice distance
can be different from the in-slice resolution. Further, let (s, t)
denote the local coordinates on the Ns × Nt sized 2D flat
detector plane where the s-axis is perpendicular to the z-axis
of the volume while the t-axis is parallel to it. The size of
each detector bin is ∆s ×∆t. In this study, we consider CT
geometries that have the rotation axis aligned with the z-axis.

The cone-beam emerging from the i-th detector bin can be
drawn as a pyramid-like shape by connecting the four edges of
the bin with the X-ray point source (vsrc). We shall denote the
volume subtended by the cone-beam the source-bin pyramid
(SBP) and define ΩSBP to embrace all voxels intersecting with
the SBP. The volume integral acquired from projection view
θ is then expressed as follows (see Fig. 4 for an illustration):

pθi ≈
1

| sinαi| · γφ,iγϕ,i

∑
n∈ΩSBP

f [n]
dn

||vn − vsrc||2
, (7)

where the sum is over all voxels in ΩSBP. The value of each
voxel, f [n], is weighted by the ratio of the ray-voxel inter-
section volume (dn) in the nominator and the squared beam
divergence term in the denominator. This squared divergence
term follows the inverse square law and accounts for the
geometric spreading already mentioned for the 2D case. Note

4

Fig. 4. Ray-voxel intersection volume in cone-beam geometry. The SBP
(source-bin pyramid) is shaded gray, the intersection volume is shaded red.

that vn is the center position of a voxel indexed by n. The sum
is multiplied with a SBP dependent constant which includes
the geometric angular dispersion of the beam (| sinαi|) and
the two cone angles, γϕ,i and γφ,i in which ϕ and φ represent
the azimuthal and the polar angles, respectively.

The value of | sinαi| is approximated by decomposing αi
into azimuthal (αϕ,i) and polar (αφ,i) angles by connecting
the X-ray source to the center of a detector bin assuming a
narrow ΩSBP. Then, | sinαi| is computed by the multiplication
of the two components as:

| sinαi| ≈ | sinαφ,i| ·max(| cosαϕ,i|, | sinαϕ,i|) . (8)

Note that the angular dispersion term in (8) is view indepen-
dent and only requires a one-time computation that can be
used for both forward and back-projections in multiple views.
The derivation of (7) is in the supplement materials.

A. Exact ray-voxel volume

In cone-beam geometry, the intersection between a cone-
beam and a voxel becomes an arbitrary shaped 3D convex
polyhedron as shown in Fig. 4. Unlike the 2D case, there is no
direct closed form solution to compute this volume. The best
we can do is decomposing the 3D polyhedron into a number
of tetrahedra using a 3D Delaunay triangulation approach [17].
We can specify a tetrahedron by three edge vectors ai, bi, and
ci emerging from a given polyhedron vertex. The intersection
volume is then computed by summing over all K tetrahedra:

Volume =

K∑
i=1

1

3!
|ai · (bi × ci)| . (9)

As in the fan-beam case, the complexity for an exact compu-
tation of the intersection volume of a voxel with a cone-beam,
now by way of tetrahedralization, is very high and it is also
difficult to parallelize. In the following subsection, we will
return to the area look-up table introduced for the fan-beam
case and introduce another look-up table to cover the third
(height) dimension to arrive at a look-up table approach for
3D polyhedral beam-voxel intersections.

B. Height look-up table

A prism is a polyhedron that consists of an n-sided convex
polygonal base, a second congruent parallel base, and n other

Fig. 5. Computing the intersection volume by the product of Sbase and heff .

faces orthogonally joining the corresponding sides of the two
bases. The volume of a prism is easily computed by the
product of the base area and the height. Our key idea is to find
the prism that has a volume equivalent to the one generated
by the intersection of a voxel and the SBP, as shown in Fig. 4.
We call this prism Vpoly.

The SBP consists of four planes. Two of these are drawn
using the detector bin edges parallel to the t-axis, called
PLt. The others originate from the bin edges parallel to
the s-axis, called PLs. Intersected by the two PLt, a voxel
in ΩSBP becomes a polygonal prism with base area Sbase
and height ∆z (see Fig. 5). The base area of the prism is
also the base of Vpoly. More importantly, in a CT geometry
in which the rotation axis is aligned with the z-axis, this
area can be regarded the shadow that the cone-beam leaves
on the xy-plane. This shadow is identical to the area left
by a corresponding fan-beam intersection and is efficiently
computed using the area look-up table described in Section
II-B.

To obtain the height of Vpoly, we consider the two PLs,
call them PLs,bot and PLs,top. We compute two intersection
volumes, one for each of these two planes, in a pre-defined
direction by following the exact approach from Section III-A,
call these two intersection volumes VPLs,bot

and VPLs,top .
Suppose now a rectangular prism with voxel base ∆x × ∆y

and volume VPLs,top
. Its height can be computed as follows:

hPLs,top = VPLs,top/(∆x ×∆y) . (10)

The height for VPLs,bot
is computed similarly. The difference

of the two heights derived from both of the PLs is the
height effective for the Vpoly, called heff . The intersection
volume between a voxel and a SBP can then be computed
by the product of Sbase and heff . Fig. 5 [side view] shows an
illustration of this process.

To efficiently compute the hPLs
in (10), we construct a

look-up table that returns the height for a given plane, called

5

Fig. 6. Parameterization of PLs in 2D flat detector axial cone-beam CT.

the height look-up table (hLUT). For this, we first represent
the respective plane, VPLs

, with three parameters; the first
parameter is the signed perpendicular distance from the origin
to the plane (Dpl), the second is the signed angle from
the xy-plane to the plane (θφ), and the third is the rotation
angle about the z-axis (θϕ), which is equal to a projection
angle, θ. Fig. 6 depicts these parameters in the context of
a 2D flat detector axial cone-beam X-ray CT system. A
normalized plane equation, Ax + By + Cz + D = 0 where
A2 +B2 + C2 = 1, can be derived using these parameters:

[A,B,C]T = Rz(θϕ)Rx(θφ)[0, 0, 1]T

D = Dpl ,
(11)

where Raxis(·) is a 3×3 rotation matrix about the given axis
and T is the transpose operator. Then, each element of the
hLUT indexed by (Dpl, θφ, θϕ) is computed as in (10).

In practice, similar to the fan-beam case, we pre-compute
the coefficients A,B,C,D according to (11) and store them in
a 1D view-based look-up table for fast implementation. This
incurs a (small) space complexity of O(Nt + 1) since there
are Nt + 1 PLs in a projection view, θ.

Any new hPLs
between a plane, PLs, and a voxel centered

at (x0, y0, z0) is then simply fetched from the hLUT at the
location of (Dv

pl, θφ, θϕ) where

Dv
pl = Ax0 +By0 + Cz0 +D . (12)

This equation computes the signed perpendicular distance
from the voxel center to the plane, PLs. We obtain both
hPLs,top

and hPLs,bot
in this way to finally compute heff .

Using symmetry properties in the voxel-plane intersection,
the range of plane parameters, (Dpl,θφ,θϕ), is effectively
reduced. With fixed θφ and θϕ, hLUT (−Dpl, ·, ·) is equal
to ∆z − hLUT (+Dpl, ·, ·). Similarly, with fixed Dpl and θϕ,
hLUT (·,−θφ, ·) is equal to ∆z − hLUT (·,+θφ, ·). For the
θϕ, the symmetric property described in Table I is applied. In
addition, with fixed θφ and θϕ, any Dpl that is larger than a
threshold distance converges to either zero or ∆z regardless
of θφ and θϕ. The threshold distance is calculated as follows:

Dt
pl =

1

2
·
√

∆2
x + ∆2

y + ∆2
z , (13)

which is half of the diagonal length of a voxel. Finally, the
θpol, is limited by the polar angle of the given cone-beam CT
geometry such that

θmaxφ = arctan((0.5×Nt ×∆t)/SDD) , (14)

where SDD is the distance from the X-ray source to the
detector. Thus, the parameter space we need to cover to
construct hLUT with a given cone-beam CT system becomes
Dpl ∈ [0, Dt

pl], θφ ∈ [0, θmaxφ], and θϕ ∈ [0, 45°].

C. Height approximation methods

While the above accurate scheme is fairly efficient, we have
found that there are at least two approximations that can bring
further speed-ups without significant losses in accuracy.

1) Regression method: Fig. 7 shows profiles of both the
area and the height look-up tables for several fixed angular
dimensions, i.e. θd, θϕ, and θφ, for a 0.415×0.415×0.83mm3

voxel size. For the height look-up table in Fig. 7(b), θmaxφ

is 10°. We only present the case where θϕ = 0 for sim-
plicity as we found that θϕ does not incur much variation.
We observe that especially for the height look-up table, the
non-linearity along the distance dimension is not severe and
hence an approximation by a piece-wise regression function
(θϕ = θφ = 0) is reasonable:

height =

{
∆z/2−Dpl, if 0 ≤ Dpl ≤ ∆z/2

0, otherwise .
(15)

The constant ∆z/2 is pre-computed for fast execution.
2) Distance method: The roughly linear behavior of the

height look-up table also inspires another approximation to
gauge the effective height between a detector bin and a voxel.
As illustrated in Fig. 8, we can use the overlapped distance
on a common z-axis. The common z-axis is the axis passing
through the center of the voxel onto which the two corner
points of the detector bin (located on the detector t-axis) are
projected. The effective height is then computed as follow:

heff =

{
min(z+, t

c
+)−max(z−, t

c
−), if overlap

0, otherwise .
(16)

Here, z+ and z− are two corner points of a voxel on the
common z-axis, computed as z + ∆z/2 and z − ∆z/2,
respectively. Correspondingly, the two corner points, t+ and
t−, of a detector bin on the t-axis are computed as t + ∆t

and t−∆t and are projected onto the common z-axis to yield
tc+ and tc−. Although this concept is derived from a different
perspective, it gives rise to a similar mathematical expression
than the ones underlying the distance-driven method [3] or
used for the rectangle function of the separable footprint [7].

IV. GPU IMPLEMENTATION USING CUDA

We implemented our LTRI-based framework with NVIDIA
CUDA 7.5 [15]. Algorithm 1 presents the program flow of
our approach for a 3D forward projection into a single flat-
panel view. Modifying it to multiple views or different viewing
geometries would not conceptually change this program flow.
Our parallel CUDA implementation slightly reorders and
arranges the statements into three separate kernels to take
advantage of certain geometric and hardware constellations.

The first CUDA kernel (line 2-4) initializes the projection
arrays and fills the various 1D lookup tables that hold the
coefficients needed to compute the view-dependent indices for

6

Fig. 7. Non-linearity of the (a) area and (b) height LUT.

Fig. 8. Example of the overlapped distance method.

the area and height LUTs. This can be efficiently computed
in parallel, assigning one thread per table and bin.

Then, per Section III-B, at a given view the base areas in
the xy-plane are identical for all voxels along the z-direction.
Hence, we dedicate a separate CUDA kernel (line 7-8) with
Nx×Ny threads to compute for each (i,j) voxel index the set
of base areas required for the detector bins (along s) the (i,j)
voxel maps into.

The final CUDA kernel (line 10-16) performs the actual
forward projection and has one thread per voxel (i,j,k). We
configure threads into CUDA blocks that organize voxels along
the z-direction [18] [19]. This enables threads within a block
to efficiently share the base area information once loaded into
shared memory and so gain high memory access speeds.

The thread first identifies the full maximum rectangular
footprint of a voxel over (s, t). These extents form a nested
loop over the covered t and s. The outer, (t), loop computes the
effective height either by fetching it from the lookup table in
texture memory or by computing using (15) or (16). The inner,
(s), loop multiplies the height with the base area at this s-
location (stored in shared memory) to compute the intersection
volume of the voxel with the SBP at this (s, t) bin. This weight
is then multiplied with the voxel value and the geometric
divergence term. To add this product to the (s, t) bin we use
atomic operations to avoid any race conditions incurred by
other parallel threads targeting the same bin.

The corresponding CUDA kernel for back projection re-
verses the update step of the above forward projector. Here,
the weighted CT measurements are sequentially added to a
register and once fully accumulated the value is added to the
3D volume residing in global memory.

Algorithm 1: Forward projection with LUTs (one view).
1 Procedure ForwardProjection
2 Initialize projection array to zero;
3 acLUT ← Compute area LUT coefficients A...C, θd;
4 hcLUT ← Compute height LUT coefficients A...D, θφ,θϕ;
5 for j ∈ [0, Ny − 1] do
6 for i ∈ [0, Nx − 1] do
7 {sij} ← Determine detector bins associated with voxel

(i, j) along the s-axis;
8 {Aij} ← Obtain base areas from area LUT using

index (Dline, θd) computed via (3) and (5) with
coefficients from acLUT ;

9 for k ∈ [0, Nz − 1] do
10 dijk ← Compute distance from voxel (i, j) to source;
11 {tijk} ← Determine detector bins associated with

the voxel (i, j, k) along the t-axis;
12 for t ∈ {tijk} do
13 hijk ← Compute effective height from height LUT

using index (Dpl,θφ,θϕ) computed via (12) and
coefficients from hcLUT . Or use (15) or (16) for
approximated height. ;

14 for s ∈ {sij} do
15 p← f [n]×Aij [s]× hijk/dijk ;
16 Update projection at (s, t) ;
17 Scale all projection views by 1/(| sinαi| · γφ,iγϕ,i) ;

We store the 3D volume data in z-major order to facilitate
data access of CUDA blocks. It allows a coalesced memory
access pattern when reading (writing) into the array in forward
(back)-projection. The storage of the CT projection data de-
pends on the projection direction. For back-projection, we use
(read-only) texture memory to take advantage of the fast L1
texture cache that is filled from our spatially local (z-major)
memory access pattern. In forward projection, the CT data
is stored in t-major order because the writing variation in t-
direction is smaller than in the s-direction for a thread block.

The complete CUDA source code for the forward/back pro-
jection kernels is available at https://github.com/bsmind/LTRI.

V. RESULTS

Our first goal was to find the optimal resolutions for the
area and height look-up tables where we needed to balance two
opposing goals – size and accuracy. We did this experimentally
by assessing their accuracy while varying their resolutions.
After finding these tables, we evaluated the proposed methods
in terms of time performance and reconstructed image quality.

A. Optimal look-up tables

As mentioned, we devised an experimental procedure to
determine the optimal size (that is, the optimal number of cells
within the fixed extent) for each of the look-up tables (LUTs).
We consider a LUT optimal when any further increase in size
does not yield a significant improvement in bi- or tri-linear
interpolation accuracy. We used a greedy method to determine
these optimal sizes. For each LUT dimension, we gradually
increased its size until the accuracy converged, while the other
LUT dimension sizes were fixed at a reasonably high number.

7

This was repeated for each dimension separately to find the
optimal multidimensional LUT. Our error metric is:

error =
1

N

∑
d∈D

|EX(d)− LUT (d)| , (17)

where D is a reference data set with N data point vectors,
d, which are (Dline, θd) for the area LUT (aLUT) and
(Dpl, θφ, θϕ) for the height LUT (hLUT). In this equation,
EX(·) returns the exact solution of a voxel-ray intersection
area (or volume) as described in Section II-A (or III-A), while
LUT (·) returns the interpolated solution using the LUT under
investigation. We stopped increasing a dimension size when
the accuracy began to level off.

The reference set was built by uniformly sampling 4000×
360 data points over the range of Dline ∈ [0, Dt

line] and θd ∈
[0, 45°], respectively, for aLUT , where Dt

line was set to about
0.3 mm using (6). In the same way, for hLUT 4000×90×90
reference data points were collected over the range of Dpl ∈
[0, Dt

pl], θφ ∈ [0, θmaxφ] and θϕ ∈ [0, 45°], respectively, in
which Dt

pl was 0.508 mm and θmaxφ was 10° according to (13)
and (14). Likewise, for the generation of the LUTs we also
used a uniform sampling scheme. We used the same ranges
as the reference data set but with different intervals according
to the selected dimension size.

Fig. 9(a,b) shows our experimental process to determine the
optimal aLUT . First, the Dline dimension length was varied
with the θd dimension size fixed to 360. The optimal size of
the Dline dimension was selected as 1500 because the accuracy
improvement was not significant after that. With the optimal
dimension size for Dline determined, the θd dimension size
was explored. We found that here the optimal size converged at
a value of 50. This yielded an optimal aLUT of size 1500×50
points which takes about 0.3 MB of memory space in single
precision. The optimal hLUT was determined in a similar
fashion (see Fig. 9(c,d,e)), resulting in a size of 1500×25×7
with 1.05 MB space complexity. For a smoother appearance,
we fit a non-linear regression curve to the error data points
in Fig. 9. This eliminated a few outlier data points that had
much smaller errors than the majority of their neighbors. These
outliers occurred because the uniform sampling scheme caused
some sampling points to match misleadingly well with the
reference data. Fitting the regression curve helped in the visual
assessment of the optimal dimension size.

The experimental results presented in Fig. 9 show that the
LUTs are more sensitive in the distance dimensions (Dline and
Dpl) than in the angular ones. This means that the functions for
the distance dimensions have a higher degree of non-linearity,
requiring a higher table resolution to keep the bi- or tri-linear
interpolation error low. Fig. 7 shows this non-linear behavior
for both aLUT and hLUT using a fixed angular dimension.
Especially, for the hLUT , the non-linearity is not as severe as
for aLUT and this validates the approximate methods of III-C
for the CT reconstructions presented in the following Section.

B. CT reconstruction with look-up tables

To competitively assess our LTRI method we compared it
with the separable footprint (SF) method [7]. The SF has

been shown to be more accurate than the (older) distance-
driven (DD) method [3] while keeping a comparable time
performance. Since the SF method was already compared
exhaustively with the DD method in [7] we have not conducted
a formal comparison with the DD method (see also [20])..
We begin by examining the accuracy of the two methods,
LTRI and SF, for forward projection only and then move to
comparing them within a complete iterative CT reconstruction
framework using both phantom and clinical CT data.

1) Accuracy of forward projector: Since the volume in-
tegration model can be used for both forward- and back-
projections, we focus on the forward projection to evaluate the
accuracy of our LTRI method. Our first test object is a simple
cube with side length 2 mm, uniform density. We placed the
center of this object at four different locations – at (0, 0, 0) mm
and (100, 150, 0) mm in the in-center plane, and at (0, 0,−100)
mm and (100, 150,−100) mm in an off-center plane. Forward
projection was simulated under an axial cone-beam X-ray CT
system with a flat detector. The source-detector distance is 949
mm and the source-axis distance is 541 mm. We generated 360
true projection data uniformly distributed over 360° by linearly
averaging 1000×1000 analytical line integrals of rays sampled
over each detector bin where ∆s = ∆t = 1 mm.

For the LTRI, there are three approaches. The first one used
a 1500 × 50 size aLUT and a 1500 × 25 × 7 hLUT as
we discovered in Section V-A, called LL. The other methods
replaced the hLUT with either the regression model in (15)
or the distance model in (16) while keeping the same aLUT .
We call these methods LL, LR and LD, respectively. For the
separable footprint (SF) methods, we used either two trapezoid
functions (TT) or one trapezoid and one rectangle function
(TR) with the A1 amplitude method [7].

To evaluate the accuracy of each tested forward projector
we define the maximum absolute error as

eθ = max
∣∣Pan

θ −Pap
θ

∣∣ , (18)

where Pan
θ is the projection obtained with the analytical

method and Pap
θ is the same projection obtained with one of

the tested approximate methods – LL, LR, LD, TT, and TR.
Fig. 10 plots the per-view eθ on a logarithmic scale over all

360 views, and Table II summarizes its average (maximum)
over this range of views, for all tested methods. We observe
that when the cube is located in the center slice (cases a and b),
for both LTRI and SF, the variants that approximate the height
term are just as accurate as their accurate counterparts. This
is because the height term is not relevant here. On the other
hand, when the cube is the center (z-) column (a, c), the LTRI
methods show about 1.6-2 times better accuracy than the SF
methods. Lastly, when the cube is in an off-center column
(b, d), then the LTRI methods are only slightly better or
equivalent. We believe this occurs because the approximation
of the geometric angular dispersion that all methods use have
a dominating effect. In practice, however, the off-center slice,
off-center column cubes (d) will be the most frequent. This
is where the accurate versions, LL and TT, as well as the
approximations LR, LD, and TR are about equivalent (within
5%). Finally, it is also interesting to see that the view-based

8

Fig. 9. Optimal LUT. Varying (a) Dline, (b) θd of area LUT, and (c) Dpl, (d) θφ, (e) θϕ of height LUT.

Fig. 10. Max. abs. error for the cube placed at different locations

TABLE II
AVERAGE (MAXIMUM) OF THE MAXIMUM ABSOLUTE ERROR (X10−2)

Loc a LL LR LD TT TR

(a) 0.02 (0.04) 0.02 (0.04) 0.02 (0.04) 0.04 (0.06) 0.04 (0.06)

(b) 0.11 (3.70) 0.11 (3.70) 0.11 (3.70) 0.12 (3.73) 0.12 (3.73)

(c) 1.33 (2.06) 3.82 (5.56) 5.31 (7.28) 2.17 (2.83) 5.31 (7.23)

(d) 3.75 (10.4) 5.95 (20.3) 6.52 (18.0) 3.95 (10.1) 6.17 (17.2)

a Use index of Fig. 10 for the cube location.

error curves of Fig. 10 show that the difference between the
two method families is especially pronounced around 120°.

2) Time performance of forward and back projections: The
time performance for the forward and back projectors was
measured by simulating an axial cone-beam CT system with
949.075 mm source to detector distance, 647.7 mm source to
axis distance, and a flat detector with 512 × 512 bins and
1.0279 × 1.0964 mm2 bin size. We used a uniform object
with a resolution of 512× 512× 512 and 0.4883× 0.4883×
0.6250 mm3 voxel size so that all voxels in the object would

reside within the field-of-view in both forward and back-
projections. Note that for the back-projection uniform mea-
surements in all views were used. In addition to the average
time performance over 360 views (which were uniformly
distributed over 360°), we also measured the Giga-Updates
Per Second (GUPS) rate which is independent of the problem
size in the first order approximation [20]:

GUPS =
5123 × 360

10243
/time . (19)

Here, 5123 is the number of voxels involved in the forward
and back projections, and 360 is the number of views.

Table III lists the results in ms for the average projection
time and the GUPS rate is given in parentheses. All measure-
ments were obtained using a NVIDIA GTX 1070 GPU. For the
time measurements and analyses, we used the NVIDIA Nsight
tool [21]. Recall that in our CUDA implementation both the
intersecting base area for LTRI and the transaxial footprint
for SF are pre-computed. In addition, the A1 amplitude
term for SF and the angular dispersion term for LTRI are
post-multiplied (to the projections) in the forward projection
operation and pre-multiplied in the back-projection operation.
In both SF and LTRI, these two operations take less than 0.1
ms which is negligible compared to the execution time for the
main projection operation. Thus, the time performance listed
in Table III is solely differentiated by the utilization of GPU
memory and the number of arithmetic operations in computing
the height term of the ray-voxel intersection for LTRI or the
axial footprint in the z-direction for SF.

A first observation we make is that in all methods back-
projection (BP) is generally faster than forward projection
(FP). This is due to the serialized memory write operations.

For LL, both the height look-up table and the CT mea-
surement data reside in texture memory. During projection
operations, the memory access pattern to the height look-up
table is random which causes L1 texture cache bank conflicts
– this is the main reason for the slow time performance.
Likewise, in back-projection, the bank conflicts in L1 texture
cache reduce the L1 texture cache hit rate from 80% to 20%
for reading the CT measurement data from the texture memory.
Storing the height LUT in other memories did not help matters
either since these facilities are either not suitable, slower, or
incur access conflicts with other data elements.

9

TABLE III
TIME PERFORMANCE COMPARISONS [MSEC, (GUPS)]

LL LR LD TT TR
FP 44.3, (2.8) 19.0, (6.5) 18.7, (6.6) 19.9, (6.2) 18.2, (6.8)
BP 42.0, (2.9) 10.4, (12.0) 9.6, (13.0) 13.4, (9.3) 9.4, (13.1)

LR, LD, and TR which approximate the axial contribution
of a voxel to a detector bin with a simple model show better
time performance than either LL and TT due to the reduced
arithmetic/memory overhead. LD is slightly better than LR
because of its smaller amount of arithmetic operations – LR
requires three multiplications and three additions to calculate
the signed distance (Dpl) from a voxel to a plane which is
not required for LD. All LTRI methods need to compute the
distance from a voxel to the X-ray source for the geometric
spreading term – this adds an additional three additions and
one division operation which are not required by TR. Hence,
TR shows a slightly (2%) better time performance than LD.

3) Within iterative CT reconstruction: Next we plugged
the LTRI method into a simultaneous algebraic reconstruction
technique (SART) framework [22]. To investigate the perfor-
mance within SART, an axial cone-beam CT with 949.075 mm
for the source to detector distance and 647.7 mm for the source
to axis distance was used. A flat detector was assumed with
888 × 640 detector bins and 1.0279 × 1.0964 mm2 bin size.
Noiseless 360 CT projections uniformly distributed over 360°
of a modified Shepp-Logan phantom (SLP) were simulated by
linearly averaging a set of 8 × 8 analytical line integrals for
each detector bin [23]. We run SART for 500 iterations with
a 0.0025 relaxation factor.

Fig. 11 presents a qualitative comparison of the recon-
structed images for the Shepp-Logan phantom, captured after
500 SART iterations, for slices taken transversal, coronal, and
sagital for all variations of the LTRI and SF methods. The SLP
slices on the left indicate the direction of two profile plots (red
and yellow lines) and these plots are shown in the last row of
Fig. 11. We observe that the slices look virtually identical for
all methods and so do the profiles. Finally, for a quantitative
comparison of the two methods we measured the RMS error
after each SART iteration had completed:

eRMS =

√√√√ 1

M

M∑
i=1

||f(i)− fSART (i)|| , (20)

where f is the original Shepp-Logan phantom used to generate
the projection data, fSART is the image reconstructed with
either SF (TT and TR) or LTRI (LL, LR and LD), and M is
the number of voxels. We found that the RMS error measured
after each SART iteration was virtually identical, and so was
the convergence rate for all methods.

The findings obtained for the phantom scenario fully extend
into the clinical setting. We obtained a set of 360 clinical CT
projections of a cervical region with 20 cm of field-of-view
using a Medtronic O-arm O2 surgical imaging system with
1147.7 mm source to detector distance and 647.7 mm source
to axis distance and a flat detector with 1024×386 bins of size
0.384×0.755 mm2. The object size for the reconstruction was

512×512×196 with a 0.415×0.415×0.83 mm3 voxel size. As
Fig. 12 shows, the reconstructions and profile plots obtained
with the clinical data set after 200 SART iterations are nearly
indistinguishable. For brevity,we only present reconstruction
results for LTRI-LL and SF-TT but confirm that all variations
show a similar visual appearance and profiles.

VI. CONCLUSIONS

Modeling a CT system as accurately as possible has be-
come an important goal in CT reconstruction research. It is
particularly crucial in iterative reconstruction where systematic
errors can hamper convergence. In this work we have focused
on performing the volumetric integration of the box-shaped
voxel basis function at high fidelity. In contrast to previous
efforts that have used projection space approaches to model
the basic function’s projective footprint, we have developed a
scheme that performs the voxel integration directly in image
space. Intersecting the box-shaped voxel with the pyramidal X-
ray beam segment defined by the boundaries of the respective
detector bin gives rise to an irregular polyhedron which is
difficult to integrate. To make this integration computationally
feasible we have devised an efficient lookup table-based ap-
proach which is amenable to GPU acceleration. We throughly
compared our image-space method with the state-of-the-art
projection space method – the separable footprint. For this
study we fully optimized GPU-implementations of both meth-
ods and also derived two mindful approximations for ours.
We find that our method and its variations have similar perfor-
mance both in time and accuracy than the respective variations
of the separable footprint method and by these measures it is
equivalent. Nevertheless, we believe that the extensive study
we performed sheds new light on understanding the accurate
modeling of voxel-based basis functions. Furthermore, all our
program code is open source and freely available on github.

ACKNOWLEDGMENT

This research was partially supported by NSF grant IIS
1527200 and the MISP (Ministry of Science, ICT & Future
Planning), Korea, under the ”ICT Consilience Creative Pro-
gram” (IITP-2015-R0346-15-1007) supervised by the IITP. We
also thank Medtronic, Inc. for their support.

REFERENCES

[1] R. L. Siddon, “Fast calculation of the exact radiological path for a three-
dimensional ct array,” Medical physics, vol. 12, no. 2, pp. 252–255,
1985.

[2] P. M. Joseph, “An improved algorithm for reprojecting rays through
pixel images,” IEEE transactions on medical imaging, vol. 1, no. 3, pp.
192–196, 1982.

[3] B. De Man and S. Basu, “Distance-driven projection and backprojection
in three dimensions,” Physics in medicine and biology, vol. 49, no. 11,
p. 2463, 2004.

[4] H. Yu and G. Wang, “Finite detector based projection model for high
spatial resolution,” Journal of X-ray Science and Technology, vol. 20,
no. 2, pp. 229–238, 2012.

[5] P. M. Joseph and R. D. Spital, “The exponential edge-gradient effect in
x-ray computed tomography,” Physics in medicine and biology, vol. 26,
no. 3, p. 473, 1981.

[6] S. Zhang, D. Zhang, H. Gong, O. Ghasemalizadeh, G. Wang, and
G. Cao, “Fast and accurate computation of system matrix for area
integral model-based algebraic reconstruction technique,” Optical En-
gineering, vol. 53, no. 11, pp. 113 101–113 101, 2014.

10

Fig. 11. Shepp-Logan phantom (SLP) study. Top to bottom: transverse, sagittal, coronal slices of the reconstructions and the profile plots across the lines
indicated in the SLP slices . Left to right: the original SLP phantom and the various methods we discussed. For the profiles (last row), (1,2) corresponds to
the vertical (yellow) and horizontal (red) lines in the transverse view. Likewise, plots (3,4) are for the sagittal view and plots (5,6) is for the coronal view.

Fig. 12. Clinical study. [top] LTRI (LL), [middle] SF (TT), [bottom] profile
analysis. From left to right: transverse, sagittal, and coronal views.

[7] Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and back-projection
for X-ray CT using separable footprints,” IEEE Transactions on Medical
Imaging, vol. 29, no. 11, pp. 1839–1850, 2010.

[8] S. Ha, A. Kumar, and K. Mueller, “A study of volume integration models
for iterative cone-beam computed tomography,” Proc. Intl. Mtg. on Fully
3D Image Recon. in Rad. and Nuc. Med, 2015.

[9] F. Xu and K. Mueller, “Accelerating popular tomographic reconstruction
algorithms on commodity pc graphics hardware,” IEEE Transactions on
nuclear science, vol. 52, no. 3, pp. 654–663, 2005.

[10] ——, “Real-time 3d computed tomographic reconstruction using com-
modity graphics hardware,” Physics in medicine and biology, vol. 52,

no. 12, p. 3405, 2007.
[11] S. Ha, H. Li, and K. Mueller, “Efficient area-based ray integration using

summed area tables and regression models,” CT Meeting, 2016.
[12] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra,

“Fast summed-area table generation and its applications,” in Computer
Graphics Forum, vol. 24, no. 3. Wiley Online Library, 2005, pp. 547–
555.

[13] A. Entezari, M. Nilchian, and M. Unser, “A box spline calculus for the
discretization of computed tomography reconstruction problems,” IEEE
transactions on medical imaging, vol. 31, no. 8, pp. 1532–1541, 2012.

[14] A. Ziegler, T. Köhler, T. Nielsen, and R. Proksa, “Efficient projection
and backprojection scheme for spherically symmetric basis functions in
divergent beam geometry,” Medical physics, vol. 33, no. 12, pp. 4653–
4663, 2006.

[15] “Nvidia cuda c programming guide,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide.

[16] E. W. Weisstein, “Polygon area,” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/PolygonArea.html.

[17] D.-T. Lee and B. J. Schachter, “Two algorithms for constructing a de-
launay triangulation,” International Journal of Computer & Information
Sciences, vol. 9, no. 3, pp. 219–242, 1980.

[18] E. Papenhausen, Z. Zheng, and K. Mueller, “Gpu-accelerated back-
projection revisited: squeezing performance by careful tuning,” in Work-
shop on High Performance Image Reconstruction (HPIR), 2011, pp. 19–
22.

[19] M. Wu and J. A. Fessler, “Gpu acceleration of 3d forward and backward
projection using separable footprints for x-ray ct image reconstruction,”
in Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med,
vol. 6. Citeseer, 2011, p. 021911.

[20] R. Liu, L. Fu, B. De Man, and H. Yu, “Gpu-based branchless distance-
driven projection and backprojection,” IEEE Transactions on Computa-
tional Imaging, 2017.

[21] “Nvidia nsight,” http://www.nvidia.com/object/nsight.html.
[22] A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruc-

tion technique (sart): a superior implementation of the art algorithm,”
Ultrasonic imaging, vol. 6, no. 1, pp. 81–94, 1984.

[23] A. C. Kak and M. Slaney, Principles of computerized tomographic
imaging. SIAM, 2001.

